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Abstract

The CPMG multi-echo technique is often used to investigate the translational motion of diffusing nuclei in a confining medium.
Henceforth, periodically repeated RF pulses with a diffusion-sensitizing gradient yield a formation of spin echoes of gradually decreasing
amplitudes. The parameters of their exponential fits may characterize the structure of porous materials or biological tissue. In this paper,
a multiexponential character of the CPMG measurements is rigorously demonstrated, once a geometrical confinement is present. Based
on the multiple propagator approach, we derived a spectral representation for the echo amplitudes under external magnetic field of an
arbitrary gradient profile. The multiple relaxation times and their spectral weights were found in a general form. The study of simple
restrictive media allowed to obtain a quantitative condition under which the multiexponential attenuation is reduced to a monoexponen-
tial one.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The pulsed gradient spin echo technique is widely
applied to study the confinement of diffusing particles in
restricted geometry [1]. The use of the time-depended mag-
netic field gradient to encode the spin phase distribution for
translational motion of nuclei provides a mean to charac-
terize complex structures like porous materials or biologi-
cal tissues [2–10].

In the multi-echo or Carr–Purcell–Meiboom–Gill
(CPMG) technique, a first 90� RF pulse flips the spin mag-
netization into the transverse plane. Periodic repetition of a
180� RF pulse with diffusion-sensitizing gradients yields
progressive signal attenuation due to intrinsic spin–spin
relaxation and to translational motion of the nuclei
(Fig. 1). In the case of free diffusion under a steady gradient
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of amplitude g, a monoexponential attenuation has been
demonstrated in [11,12]

SðnT Þ / expð�nT=T cpmgÞ ð1Þ
with the characteristic relaxation time Tcpmg

1

T cpmg

¼ 1

T 2

þ Dc2g2T 2

12
; ð2Þ

where T2 is the intrinsic spin–spin relaxation time, D is the
(free) self-diffusion coefficient, T is the echo time, and c is
the nuclear gyromagnetic ratio. This behavior has been
thoroughly verified in experiments (see [1] and references
therein). In this case, a few experimental values S (nT),
two at least, are sufficient to compute the relaxation time
Tcpmg as

1

T cpmg

’ 1

T
ln

SðnT Þ
Sððnþ 1ÞT Þ

� �
; ð3Þ

which does not depend on the echo number n. It allows one
to find the diffusion coefficient D or spin–spin relaxation time
T2 quite accurately [1]. Relatively simple implementation
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Fig. 1. (A) Typical CPMG sequence starts with a 90� RF pulse followed
by periodic repetition of a 180� RF pulse with diffusion-sensitizing
gradients (e.g., of trapezoidal shape). The pulsed gradient profile is
supposed to be the same before and after 180� RF pulse. The phase cycling
of the 180� RF pulses can be applied to reduce the adverse effects of RF
inhomogeneities [26]. (B) Effective gradient profile g (t) accounts for the
inversion of the magnetization orientation by the 180� RF pulse as change
of the gradient direction.
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of CPMG sequences made them a powerful experimental
tool to investigate the diffusive motion in natural or
artificial structures, e.g., porous structure of rocks [13],
cements [14–17], or alveolar tissues of the human lungs
[18].

However, the restrictive character of the motion in
such complex geometry may modify not only the diffu-
sion coefficient (as a result of tortuosity effect in porous
materials [19–24]), but, more importantly, the monoexpo-
nential attenuation of the signal [25]. This point can be
illustrated by a simple case. For slow diffusion, only a
small fraction of nuclei can reach the boundaries during
the short echo time T. One could thus expect that the
relation (1) still holds, at least for the first echoes.
However, with a further increase of the echo number,
larger and larger fractions of nuclei encounter the
boundaries. For n large enough, the interfacial confine-
ment affects the Brownian motion so strongly that the
free diffusion regime and relation (1) become invalid.
In particular, one may expect a passage to the fast diffu-
sion limit for very large echo numbers. In this light,
several theoretical questions appear: what type of
behavior has to be expected, how many characteristic
times may be involved, what is the role of a geometrical
confinement, where such different situations can be
experimentally observed?

The goal of this paper was to provide rigorous
responses to these fundamental questions. For this pur-
pose, we first derive a formal spectral representation of
the signal based on the multiple propagator approach
[27,28]. We demonstrate that once the diffusive motion
is geometrically restricted, multiexponential attenuation
of the CPMG echo train occurs. The involved charac-
teristic times and their weights are then related to the
spectral parameters. From the numerical study of
typical restrictive domains (two planes, cylinder, and
sphere), we define simple conditions under which the
multiexponential behavior is reduced to a monoexponen-
tial one.

2. Multiple propagator approach

Although the spin echo phenomenology is relatively well
understood, the theoretical and numerical NMR study of
restricted diffusion in irregular domains still presents a
challenging issue. Considerable progress has been achieved
by the multiple propagator approach first proposed by
Caprihan et al. [27], further developed by Callaghan [28]
and equivalently reformulated by Barzykin [29,30] and
Sukstanskii and Yablonskiy [31].

Let us consider the diffusive motion of a nucleus
between the first 90� RF pulse and the moment T of
echo formation, in presence of a linear time-dependent
gradient of the magnetic field (an example of
trapezoidal gradient shape is shown in Fig. 1A).
Throughout this paper, the effect of residual magnetic
field inhomogeneities is neglected, i.e., the diffusion-sen-
sitizing gradient only can lead to the nuclei dephasing
(perfect shimming of the system, no susceptibility effect,
etc.). The application of the 180� RF pulse can be taken
into account through an effective gradient profile g (t)
for which the magnetization direction is inverted after
T/2 (Fig. 1B). Since gradients before and after 180�
RF pulse are supposed to be identical, the effective
gradient profile g (t) is antisymmetric with respect to
the time T/2:

gðT � tÞ ¼ �gðtÞ. ð4Þ
In particular, the rephasing condition required for echo for-
mation is automatically satisfied,Z T

0

dt gðtÞ ¼ 0; ð5Þ

i.e., the accumulated phase u of an immobile nucleus is
strictly zero. In other words, the diffusive motion only
has to be responsible for nuclei dephasing and the conse-
quent signal attenuation. We do not consider here the
intrinsic spin–spin relaxation also leading to the signal
attenuation since it can be easily taken into account as in
Eq. (2).

According to the multiple propagator approach, the
phase accumulated by a diffusing particle during its sto-
chastic motion under magnetic field is equal to

u ¼ c
Z T

0

dt ðgðtÞ � rðtÞÞ;

where (g (t) Æ r (t)) denotes the scalar product between the
effective gradient g (t) and the position r (t) of the diffusing
nucleus at time t. Dividing the time interval [0, T] into N
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subintervals of duration s = T/N, one uses the trapezoidal
approximation of the integral to get

u ’ c
XN�1

k¼0

s
ðgðksþ sÞ � rðksþ sÞÞ þ ðgðksÞ � rðksÞÞ

2
.

If the time step s is small enough, the factor 1/2 in front of
the first and the last terms can be neglected in order to
write the accumulated phase in a simpler form:

u ’ sc
XN

k¼0

ðgðksÞ � rðksÞÞ. ð6Þ

The contribution eiu of one nucleus to the entire signal
has to be averaged over the whole ensemble. The initial
position r0 of a nucleus in the confining domain X is dis-
tributed according to a given steady-state density q (r0).
The probability distribution of the position r1 = r (s) after
time s is defined by the Green function Gs (r0, r1) of the dif-
fusion operator. This function, also called propagator, is a
solution of the diffusion equation in the domain X

o

ot
� DD

� �
Gtðr; r0Þ ¼ dðr� r0ÞdðtÞ;

where d (Æ) is the Dirac delta-function (distribution). If the
interface is impermeable for nuclei and does not contain
magnetic impurities which may lead to surface relaxation,
the Neumann (or reflecting) boundary condition is im-
posed. We focus our attention on this specific case, bear-
ing in mind that an extension to a more general mixed
boundary condition is straightforward (see [30,32] for
details).

The Markovian property of the Brownian motion
ensures that, once arrived at position r1, the distribution
of the next position r2 = r (2s) is again given by the Green
function Gs (r1, r2). Repeatedly applying this property, one
obtains the signal at time T = Ns as

SðT Þ ¼
Z

X
dr0

Z
X

dr1 � � �
Z

X
drnqðr0Þeicsðr0�gð0ÞÞ

� Gsðr0; r1Þeicsðr1�gðsÞÞGsðr1; r2Þ � � � eicsðrN �gðNsÞÞ. ð7Þ

In this expression, the Green functions encode stochastic
motion during successive time intervals of duration s, while
exponential factors represent ‘‘elementary’’ variations of
the nucleus phase.

To proceed further, a spectral decomposition of the
Green function Gs (r, r 0) over the eigenfunctions um (r) of
the Laplace operator D in the domain X is used1:

Gsðr; r0Þ ¼
X

m

umðrÞ u�mðr0Þe�jms;

jm being eigenvalues of the Laplace operator [33]. After
substitution of this decomposition for the Green functions
in (7), summation over each index m is thought as a matrix
product. In this way, Callaghan derived a convenient ma-
1 The initial density q (r) may be set to the inverse of the domain volume
V provided that eigenfunctions um (r) are appropriately normalized.
trix representation of the entire signal for an arbitrary gra-
dient profile g (t) [28]. In our notation, the signal at time T

is equal to scalar product between two vectors, U and HU*,

SðT Þ ¼ ðU � HU �Þ; ð8Þ
where the asterisk denotes complex conjugate. The infinite-
dimension vector U is composed of the Fourier transforms
of eigenfunctions um (r)

Um ¼ V �1=2

Z
X

dr umðrÞ exp½icsðr � gð0ÞÞ�; ð9Þ

while infinite-dimension matrix H is determined by the
effective gradient profile g (t) as product

H ¼ RAðcsgðsÞÞ R � � �Aðcsgðns� sÞÞR. ð10Þ
Here two infinite-dimension matrices R and A represent

the ‘‘elementary’’ stochastic displacement and the ‘‘elemen-
tary’’ phase variations, respectively, with

Rm;m0 ¼ dm;m0 exp½�jms�; ð11Þ

Am;m0 ðqÞ ¼
Z

X
dr u�mðrÞum0 ðrÞ exp½iðr � qÞ�. ð12Þ

The multiple propagator approach had been successfully
applied to study the restricted diffusion between two paral-
lel planes (one-dimensional restriction), inside an infinite
cylinder (2D), and inside a sphere (3D), when the eigen-
functions um (r) are known in an explicit analytical form
[31,32]. Although the shape of these domains is quite sim-
ple, their use to model a geometrical confinement was fruit-
ful for a better understanding of the diffusive motion in
more realistic media.

3. Spectral representation

From a mathematical point of view, the condition (4)
implies that the matrix H is Hermitian, i.e., H �jk ¼ Hkj, so
its eigenvalues ka and eigenvectors Va can be introduced as:

HV a ¼ kaV a.

The scalar product in (8) can thus be written in the spec-

tral decomposition

SðT Þ ¼
X

a

caka ð13Þ

with positive coefficients

ca ¼ ðU � V �aÞðU � � V aÞ.
The normalization condition (U Æ U*) = 1 impliesX

a

ca ¼ 1; ð14Þ

i.e., the coefficient ca provides the relative weight of the

eigenmode Va to the whole signal.
Although the matrices R, A, and H are defined to be of

infinite dimension, an exponential decrease of the elements
Rm;m0 with m or m 0 allows one to truncate them to a finite
dimension. It means that a small number of eigenvalues
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ka and their weights ca are in general sufficient to accurately
describe the signal attenuation, whatever the geometrical
complexity of the confining medium.

For a CPMG sequence, the same profile g (t) is periodi-
cally repeated n times, so that the amplitude of the nth echo
(signal at time nT) can be also developed in a spectral
decomposition:

SðnT Þ ¼ ðU � HnU �Þ ¼
X

a

cak
n
a. ð15Þ

Consequently, the spectral properties of the matrix H

determine entirely the amplitudes of the whole echo train.
Since this matrix is Hermitian, the eigenvalues ka are real.
On one hand, all eigenvalues should not exceed 1 to
avoid an exponential growth of the echo amplitudes in
Eq. (15). On the other hand, the diagonal-dominant
structure of the matrix H would ensure that ka are posi-
tive,2 i.e.

0 6 ka 6 1. ð16Þ
These inequalities allow to identify the relation (15) as a

multiexponential attenuation of the echo amplitudes

SðnT Þ ¼
X

a

cae�nT=sa ð17Þ

with characteristic times

1

sa
¼ 1

T
ln k�1

a . ð18Þ

The important point is that such a multiexponential

behavior is formally unavoidable, once a geometrical confine-
ment is present. At the same time, a reduction to a mono-
exponential attenuation can be observed under certain
conditions which are examined in the next section.

4. CPMG measurements of restricted diffusion

In order to understand how a geometrical confinement
leads to the multiexponential behavior, one can apply the
above spectral analysis to simple domains for which the
eigenfunctions um (r) of the Laplace operator are known
explicitly. We focus our attention to the restricted diffusion
between two parallel infinite planes separated by distance
2a, where the magnetic field gradient g (t) is applied in
the normal direction to the planes. The problem is equiva-
lent to one-dimensional diffusion on the interval (0, 2a)
with reflections at endpoints 0 and 2a. A similar analysis
will be then performed for diffusing nuclei confined inside
an infinite cylinder (2D restriction) and a sphere (3D
restriction).
2 The rigorous mathematical demonstration of this property remains an
open question. For this reason, we propose a physical argument. If some
eigenvalues would be negative, the signal amplitudes for odd echoes would
be systematically lower than that for even echoes. Such an oscillatory
behavior due to parity of the echo number sounds unphysical, and has not
been observed in experiment. Finally, we never found negative eigenvalues
ka in numerical simulations for simple confining domains.
4.1. One-dimensional restricted diffusion

For this case, the eigenbasis of the Laplace operator is
well known [34,35]:

jm ¼ Dðpm=2aÞ2 umðxÞ ¼ �m ð2aÞ�1=2 cosðpmx=2aÞ;
where �0 = 1 and �m ¼

ffiffiffi
2
p

for m > 0. The vector U and
matrices A and R are calculated explicitly according to
their definitions (9)–(12):

Um ¼ �mwmðcsgð0ÞÞ; ð19Þ

Rm;m0 ¼ dm;m0 exp½�Dsp2m2=ð2aÞ2�; ð20Þ

Am;m0 ðqÞ ¼ �m�m0 wjm�m0 jðqÞ þ wmþm0 ðqÞ
h i.

2; ð21Þ

where

wmðqÞ ¼
ð�1Þm2aq

ð2aqÞ2 � ðpmÞ2
½sin 2aqþ iðð�1Þm � cos 2aqÞ�.

ð22Þ
The last relation taken from the Callaghan’s paper [28]
differs by the phase factor eiaq from that of Sukstanskii
and Yablonskiy [31]. This distinction does not affect the
signal S (T) thanks to the rephasing condition (5).

Since the matrix H entirely determines the echo
train attenuation, it should contain all relevant
physical (i.e., dimensional) quantities of the problem:
diffusion coefficient D, distance between planes 2a,
maximum gradient amplitude g, gyromagnetic ratio c,
and echo time T. However, as a mathematical object,
the matrix H is independent of physical units. It
means that the above physical quantities can enter
only in dimensionless combinations. For this reason,
we introduce two characteristic times: the diffusion
time td = a2/D which determines the average time need-
ed for a nucleus to diffuse on the distance a, and the
dephasing time tc = (cga)�1 which defines the time of
signal dephasing in the absence of diffusion. In other
words, tc is the time needed for dephasing of order
1 between two immobile nuclei within the distance a

under gradient g. Looking at Eqs. (19)–(22), it is easy
to check that the matrix H defined by (10) actually
depends only on two independent dimensionless param-
eters T/td and T/tc. Following [31], we also introduce
their ratio

p ¼ tc

td
¼ D

cga3
; ð23Þ

which may be formally ranged from 0 (‘‘absence of diffu-
sion’’) to infinity (‘‘absence of gradient’’).

To calculate the signal attenuation for given values of
two independent dimensionless parameters (e.g., p and
T/tc), the matrix H is computed numerically. For this
purpose, the time interval is divided into N subintervals
of duration s = T/N. Although the method can be applied
for any gradient profile, a steady gradient is used for
distinctness, i.e., the effective gradient is
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Fig. 2. The six most contributing eigenvalues ka (top) and their weights ca
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gðtÞ ¼
g 0 6 t < T=2;

0 t ¼ T=2;

�g T =2 < t 6 T .

8><
>:

In this case, the general definition (10) of the matrix H is
reduced to

H ¼ ðRAÞN=2�1RðRA�ÞN=2�1R;

where

A � AðcsgÞ ¼ AðN�1ðT=tcÞ=aÞ.
According to Eqs. (21) and (22), the elements of the

matrix A (q) are determined by the product qa. For this
case, one gets qa = N�1 (T/tc) so that the matrix A depends
only on the dimensionless parameter T/tc (and numerical
constant N�1). In a similar way, the elements of the matrix
R written as

Rm;m0 ¼ dm;m0 exp �N�1ðT=tdÞp2m2=4
� �

show the dependence only on the dimensionless parameter
T/td = pT/tc.

The numerical analysis was implemented on the basis of
Matlab software (the code can be sent under request). We
have checked numerically that the time discretization of the
gradient profile N = 200 and the truncation of the matrices
A, R, and H to dimension 20 · 20 are fully enough to com-
pute very accurately the signal S (T) for the whole range of
parameters used below.

4.2. Multiexponential behavior

The first numerical result confirms that only a small
number of eigenmodes is sufficient to give a complete
description of the signal attenuation. The dependence
of the most contributing eigenvalues ka and their
weights ca on the normalized echo time T/tc is shown
in Fig. 2 for the case p = 0.01 (slow diffusion or high
gradient).

The presence of several contributing eigenvalues leads to
a multiexponential dependence of the time Tcpmg on the
echo number n. If k1 denotes the largest eigenvalue for
which c1 „ 0, the relation (3) can be written as

1

T cpmgðnÞ
¼ 1

T
ln k�1

1 þ
1

T
ln

1þ
P

a>1
ca
c1

ka
k1

� �n

1þ
P

a>1
ca
c1

ka
k1

� �nþ1

2
64

3
75. ð24Þ

If the condition

ka � k1 ð25Þ
was satisfied, the second term would be negligibly small for
any n, and Tcpmg would be simplified to T= ln k�1

1 , charac-
teristics of a classical monoexponential attenuation. How-
ever, this condition fails, at least for small echo times T,
and Tcpmg becomes dependent on the echo number as
shown in Fig. 3. For example, in the case T = 10tc, the
CPMG relaxation time ranges between 20tc for the first
echoes and 53tc for echo numbers larger than 30. The use
of the classical relation (3) corresponding to a monoexpo-
nential fit would give thus different values of Tcpmg within
this range depending on the number of echoes used to cal-
culate it. Experimentally, it may be difficult or even impos-
sible to overcome this bias by acquiring a large number of
echoes sufficient to neglect the second term in (24) since it
may be limited by short spin–spin relaxation time T2 or
small signal-to-noise ratio. As a practical consequence,
one should pay particular attention to reliability of the
CPMG measurements, once a geometrical confinement is
relevant.

Yet, for very slow diffusion, when the parameter p is
vanishing, the multiexponential behavior, intrinsic for dif-
fusive motion in a confining medium, will not be apparent.
In this trivial case, a very large number of echoes have to be
acquired to eventually reveal a deviation from free diffu-
sion. Such an almost unrestricted diffusion is out of the
scope of the present paper.
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4.3. Diffusive diffraction

For intermediate diffusion regime (higher p), the eigen-
values decrease more rapidly with echo time T, so that
the number of contributing eigenmodes diminishes. For
the case p = 0.1, only three eigenmodes are sufficient to cal-
culate the signal attenuation, while the other eigenvalues
are negligible. The dependence of the three most contribut-
ing eigenvalues ka and their weights ca on the normalized
time echo3 T/tc is shown in Fig. 4. The two largest eigen-
values, k1 and k2, exhibit exponential decrease with almost

periodic oscillatory modulations, while the third eigenvalue
k3 decreases more rapidly and without oscillations. The
intersection points where k1 = k2 are almost equidistant
and separated by time interval around 10tc. At the bottom
of Fig. 4, one also finds the oscillatory behavior of the cor-
responding weights c1 and c2, while the third coefficient c3

is constant for T J 10tc. The maxima of c1 coincide with
the minima of c2 and vice versa in agreement with the nor-
malization condition (14). These extrema are also separat-
ed by time interval around 10tc. Note that this period
increases with p.

Such structural periodicity, very surprising at the first
sight, resembles indeed diffusive diffraction for confining
media in the limit of very fast diffusion [4]. However, the
present situation is substantially different. First, it occurs
when the diffusion time td = tc/p is greater (but not very
3 The knowledge of these spectral characteristics allows one to compute
the spin echo signal S (T) according to (13). Its variation with the echo
time T was studied by Sukstanskii and Yablonskiy and shown in [31]. Our
results precisely reproduce this dependence after rescaling the normalized
echo time T/tc by factor 2. We also checked its validity by the alternative
Barzykin’s approach [29,30].
much) than the dephasing time tc that corresponds to an
intermediate regime between slow and fast diffusion limits.
Moreover, as one will see in the next subsection, this oscil-
latory behavior disappears in the fast diffusion regime. Sec-
ond, there is no ‘‘q-space’’ related to the narrow pulse
approximation [1] since we are working with a steady gra-
dient. In fact, the observed periodicity concerns the con-
tributing eigenvalues and their weights as a function of

the echo time T and not of the gradient amplitude g. The
oscillatory behavior is then transposed to the signal S (T)
via the spectral decomposition (13). This result opens a
promising possibility to observe the diffusive diffraction
even in such experimental conditions when the narrow
pulse approximation is useless.4

The most unexpected result is that the intersection
points for eigenvalues k1 and k2 do not coincide with the
positions of extrema of the weights c1 and c2. This may lead
to a kind of ‘‘resonant’’ dependence of the time Tcpmg on
the echo time T. Let T ð1Þmin denote the position of the first
minimum of the weight c1. As shown in Fig. 4, the condi-
tion k1 > k2 is satisfied for any T 6 T ð1Þmin, so that, for large
enough n, one will observe a monoexponential decay with
the relaxation time s1 ¼ T= ln k�1

1 . More rigorously, one
has

lim
n!1

T cpmgðnÞ ¼ s1.

When the echo time T slowly approaches T ð1Þmin, the weight
c1 of the most contributing eigenvalue k1 goes to 0, and
one needs larger and larger n to reach the region where
Tcpmg (n) becomes constant, s1. If T is chosen to be equal

to T ð1Þmin, the eigenvalue k1 does not contribute any more
(c1 = 0), and the measured time Tcpmg is ‘‘switched’’ to

the value s2 ¼ T= ln k�1
2 , i.e.,

lim
n!1

T cpmgðnÞ ¼ s2.

Once the point T ð1Þmin is passed, the contribution of the
eigenvalue k1 re-appears, and the limit of Tcpmg (n) is again
equal to s1. The sensitivity of the CPMG relaxation time to
extrema of the weights ca could be an interesting experi-
mental tool to probe a complex geometry in the diffusive
diffraction regime.

On the other hand, such sensitivity of the measured
relaxation time Tcpmg to the timing of CPMG sequence
(e.g., echo time T) may be a source of significant errors
in experimental determination of physical characteristics
like spin–spin relaxation time or diffusion coefficient.
Indeed, if the echo time happened to be close to a minimum
It should be noticed that, for the particular case of a steady gradient,
the echo time T coincides with the gradient duration and can be thus
thought, at least qualitatively, as a ‘‘measure’’ of the effective dephasing of
the nuclei. To make this point more clear, we recall that the q-parameter is
typically defined as cgd, d being the gradient duration. It means that the
‘‘strength’’ of the dephasing effect can be increased either by gradient
amplitude g, or by its duration d. Although such a simplified concept is
formally appropriated only for the narrow pulse approximation (d fi 0), it
seems to be meaningful in our case of a steady gradient.



124 D.S. Grebenkov / Journal of Magnetic Resonance 180 (2006) 118–126
of the weight c1, the signal would be mainly determined by
the second eigenmode so that Tcpmg would be close to s2

instead of s1. In this case, a small deviation of the echo time
may change substantially the measured relaxation time.
Since the minima of the weight c1 as a function of T are
a priori unknown, an improper choice of the echo time
may lead to significant errors. A further theoretical investi-
gation will be useful to give a quantitative criterion how the
‘‘proper’’ echo times should be chosen. In practice, the use
of different echo times can be suggested in order to reduce
this effect. In summary, the diffusive diffraction regime
seems to be interesting to study complex morphologies
due to the high sensitivity to different parameters, but it
makes difficult a reliable quantitative determination of
the physical characteristics like the diffusion coefficient. A
monoexponential behavior would be more suitable for this
purpose.

4.4. Monoexponential behavior

By further increasing the parameter p, the effects of dif-
fusive diffraction gradually disappear. The time interval
between two successive intersection points (when k1 = k2)
and two successive extrema of their weights c1 and c2

increases and finally diverges as p approaches the critical
value pc . 0.44. A similar behavior for the FID signal
was first found by Sukstanskii and Yablonskiy [31]. For
p > pc, there is neither an intersection point nor an extre-
mum. A typical dependence of the three most contributing
eigenvalues and their weights on T/tc is shown for p = 0.5
in Fig. 5. One finds that each eigenvalue decreases expo-
nentially with progressively increasing slopes (and without
oscillatory modulations). Their weights become constant
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Fig. 5. The three most contributing eigenvalues ka (top) and their weights
ca (bottom) as function of T/tc at p = 0.5: a = 1 (solid line), a = 2 (dashed
line), and a = 3 (dash-dotted line). The weight c3 is too small to be visible
at this scale.
for T J 10tc. Even for small T, the condition (25) is fulfilled
so a monoexponential attenuation is expected with:

1

T cpmg

¼ 1

T
ln k�1

1

(the spin–spin relaxation can be taken into account by add-
ing T�1

2 to the right-hand side of this expression).
For large enough p, the fast diffusion approximation [36]

can be used to calculate the spin echo signal S (T) and, con-
sequently, the largest eigenvalue k1:

k1 	 exp � c2g2ð2aÞ4T
120D

" #
¼ exp � 2

15p
ðT=tcÞ

� �
. ð26Þ

Such an exponential decrease of k1 as a function of T/tc

can be seen in Fig. 5, where the slope is found to be 0.347.
Yet, this value remains 30% greater than the theoretical
slope of 2/15p . 0.267. It shows that the fast diffusion
approximation is not yet valid for p = 0.5. In the case
p = 1, a slope of 0.133 is found, in very good agreement
with the theoretical expression (26). The fast diffusion
approximation becomes more and more precise with fur-
ther increase of p.

The two last equations lead to the relaxation time for the
fast diffusion:

1

T cpmg

’ 1

T 2

þ c2g2ð2aÞ4

120D
; ð27Þ

which greatly differs from the classical result (2) for free dif-
fusion. Even if monoexponential attenuation is observed in
a confining medium for a wide range of echo numbers, the
relaxation time Tcpmg ought to be given by formula (27)
for the fast diffusion regime and not by the classical equa-
tion (2), which is only valid for unrestricted diffusion. Once
the motion of the nuclei is restricted, free diffusion results
may remain relevant only for the first echoes.

4.5. Transition between two regimes

The above analysis showed the behavior of the largest
eigenvalues and their weights as a function of the echo time
T. One may also wonder how these spectral characteristics
depend on the gradient amplitude g for a fixed echo time
T. Since the dimensionless parameter p is inversely propor-
tional to g, one may expect to observe a transition from the
regime without oscillations for small g (large p) to the
oscillatory regime for large g (small p). Such a transition
should occur at gradient gc = D/(cpca

3). Fig. 6 shows the
two largest eigenvalues k1 and k2 and their weights c1

and c2 for a cubic cell of size 2a = 1 mm filled of
helium-3 (c 
 2 · 108 rad T�1 s�1, D 
 3 cm2/s at pressure
0.67 bar), in a steady gradient of duration T = 10 ms. In this
case, the transition occurs around the gradient amplitude
gc 
 26.6 mT/m. For gradient amplitudes smaller than gc,
one retrieves the fast diffusion approximation (26) for which
lnk1 is proportional to g2. For larger gradient amplitude, k1

and k2 as well as c1 and c2 oscillate as expected.
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4.6. Application to realistic structures

Porous materials (e.g., cement) or biological tissues
(e.g., mammal lungs) exhibit a complex geometrical
structure with a variety of length scales. Although the
multiple propagator approach and the present spectral
analysis can be formally applied to study restricted diffu-
sion in such media, the numerical calculation of the
eigenfunctions um (r) of the Laplace operator is still very
difficult. Nonetheless, the initial NMR problem is
reduced to an analysis of the spectral properties of the
Laplace operator that is a long-standing and well-known
problem in applied mathematics. A numerical computa-
tion of the contributing eigenvalues ka and their weights
ca for some realistic structures would help to answer
some fundamental questions about restricted diffusion
in realistic media. In particular, one could determine
how many eigenmodes and relaxation times represent
the signal attenuation, as well as what kind of oscilla-
tions or periodicity may occur. The dependence of the
contributing eigenvalues on the physical parameters
could be found.

Although such numerical results are not available yet,
we may guess a general condition p J 1 that ensures a
monoexponential attenuation even for irregular geometry,
where 2a denotes the characteristic length scale of the stud-
ied structure. In the case p� 1, a multiexponential behav-
ior is expected. The intermediate values of the parameter p
may be related to a diffusive diffraction which would be
tightly related to a particular geometry.
5. Conclusion

An original theoretical aspect of restricted diffusion in
confining media was discussed in the paper. To tackle the
novel issue in a rigorous way, a spectral analysis was devel-
oped on the basis of the multiple propagator approach. A
widely used monoexponential fit to the amplitude of peri-
odically repeated spin echoes was called in question.

First, we have shown that a multiexponential attenua-
tion of the CPMG multi-echo train occurs in any geomet-
rically confined medium. A useful spectral representation
in terms of eigenvalues ka for the echo amplitudes was
derived. The relaxation times and their weights were relat-
ed to physical parameters (diffusion coefficient, echo time,
gradient profile, and gyromagnetic ratio) and geometrical
characteristics (eigenbasis of the Laplace operator).

Second, we have applied the developed spectral analysis
to study restricted diffusion in simple domains (two parallel
planes, an infinite cylinder, and a sphere). For all these
cases, it was shown that there were a small number of
eigenvalues ka contributing to the echo amplitudes.
Depending on the ratio p between the diffusion time td

and the dephasing time tc, three distinct regimes can be
observed:

• In the case of fast diffusion or small gradient (p > pc),
each eigenvalue ka decreases exponentially with the echo
time T, and the corresponding slope increases with a. As
a consequence, the contribution to the spin echo signal
of the largest eigenvalue is dominant that yields a mono-
exponential attenuation. The classical fast diffusion
approximation allows one to relate the measured relax-
ation time to the physical parameters of the CPMG
sequence.

• For the intermediate case (p < pc), there are two major
contributing eigenvalues k1 and k2 which still decrease
exponentially, but also oscillate so to cross each other
at nearly constant time intervals. Their weights c1 and
c2 oscillate almost periodically which is a sign of diffu-
sive diffraction. This behavior leads to a multiexponen-
tial attenuation with two different relaxation times.

• In the case of slow diffusion or high gradient (p� 1),
several eigenmodes contribute to the signal, so that a
complex multiexponential attenuation of the spin echo
train is to be expected.

The transition between the first two regimes occurs at a
critical value pc which depends only on the geometry of the
confining medium. In agreement with Sukstanskii and
Yablonskiy [31], we found pc . 0.44 for one-dimensional
restriction (diffusion between two parallel planes),
pc . 0.27 for 2D (cylinder), and pc . 0.18 for 3D (sphere).
For realistic structures, a similar distinction between
monoexponential and multiexponential attenuation should
be expected. Experimentally, the dimensionless parameter
p can be used to check whether the use of a monoexponen-
tial fit to the acquired data is justified. A further numerical
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study of the diffusive motion in realistic media is a promis-
ing perspective for the present spectral analysis.
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